Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Task-oriented dialog(TOD) aims to assist users in achieving specific goals through multi-turn conversation. Recently, good results have been obtained based on large pre-trained models. However, the labeled-data scarcity hinders the efficient development of TOD systems at scale. In this work, we constructed a weakly supervised dataset based on a teacher/student paradigm that leverages a large collection of unlabelled dialogues. Furthermore, we built a modular dialogue system and integrated coarse-to-fine grained classification for user intent detection. Experiments show that our method can reach the dialog goal with a higher success rate and generate more coherent responses.
translated by 谷歌翻译
The foundation models have recently shown excellent performance on a variety of downstream tasks in computer vision. However, most existing vision foundation models simply focus on image-level pretraining and adpation, which are limited for dynamic and complex video-level understanding tasks. To fill the gap, we present general video foundation models, InternVideo, by taking advantage of both generative and discriminative self-supervised video learning. Specifically, InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives, and selectively coordinates video representations of these two complementary frameworks in a learnable manner to boost various video applications. Without bells and whistles, InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications. Especially, our methods can obtain 91.1% and 77.2% top-1 accuracy on the challenging Kinetics-400 and Something-Something V2 benchmarks, respectively. All of these results effectively show the generality of our InternVideo for video understanding. The code will be released at https://github.com/OpenGVLab/InternVideo .
translated by 谷歌翻译
As the COVID-19 pandemic puts pressure on healthcare systems worldwide, the computed tomography image based AI diagnostic system has become a sustainable solution for early diagnosis. However, the model-wise vulnerability under adversarial perturbation hinders its deployment in practical situation. The existing adversarial training strategies are difficult to generalized into medical imaging field challenged by complex medical texture features. To overcome this challenge, we propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction. The contour prior features are injected to attention layer via a parameter regularization and we optimize the robust empirical risk with hybrid distance metric. We then introduce a new cross-nation CT scan dataset to evaluate the generalization capability of the adversarial robustness under distribution shift. Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks. The code and dataset are available at https://github.com/Quinn777/CAP.
translated by 谷歌翻译
Alignment between image and text has shown promising improvements on patch-level pre-trained document image models. However, investigating more effective or finer-grained alignment techniques during pre-training requires a large amount of computation cost and time. Thus, a question naturally arises: Could we fine-tune the pre-trained models adaptive to downstream tasks with alignment objectives and achieve comparable or better performance? In this paper, we propose a new model architecture with alignment-enriched tuning (dubbed AETNet) upon pre-trained document image models, to adapt downstream tasks with the joint task-specific supervised and alignment-aware contrastive objective. Specifically, we introduce an extra visual transformer as the alignment-ware image encoder and an extra text transformer as the alignment-ware text encoder before multimodal fusion. We consider alignment in the following three aspects: 1) document-level alignment by leveraging the cross-modal and intra-modal contrastive loss; 2) global-local alignment for modeling localized and structural information in document images; and 3) local-level alignment for more accurate patch-level information. Experiments on various downstream tasks show that AETNet can achieve state-of-the-art performance on various downstream tasks. Notably, AETNet consistently outperforms state-of-the-art pre-trained models, such as LayoutLMv3 with fine-tuning techniques, on three different downstream tasks.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 19 popularly used PLMs. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.
translated by 谷歌翻译
客户评论通常包含有关一个人在线购物体验的大量信息。尽管积极的评论对商店有益,但负面评论将在很大程度上影响消费者的决定,并可能导致销售下降。因此,仔细和有说服力地回答每个负面评论并最大程度地减少其不利影响至关重要。最近的研究考虑利用生成模型来帮助卖家做出回应。但是,此问题并不深入,因为评论可能包含问题的多个方面,这些方面应相应和有说服力地解决。在这项工作中,我们为有说服力的响应生成提出了一个多源多相关生成模型。提出的模型适当地获得和利用了各种信息来源,以产生更有信息和有说服力的响应。提出了一个多方面的细心网络,以自动参与审查中的不同方面,并确保解决大多数问题。在两个现实世界数据集上进行的广泛实验表明,我们的方法优于最先进的方法和在线测试,这证明我们的部署系统大大提高了商店处理负面评论的效率。
translated by 谷歌翻译
尽管条件变异自动编码器(CVAE)模型比传统的SEQ2SEQ模型可以产生更多的多样化响应,但响应通常与输入词的相关性低或与问题不合逻辑。进行因果分析以研究背后的原因,并提供了一种寻找调解人并减轻对话中混杂偏见的方法。具体而言,我们建议预测调解人,以保留相关信息,并自动将调解人纳入生成过程中。此外,动态主题图指导条件变异自动编码器(TGG-CVAE)模型用于补充语义空间并减少响应中的混杂偏置。广泛的实验表明,所提出的模型能够产生相关和信息性的响应,并且在自动指标和人类评估方面优于最先进的响应。
translated by 谷歌翻译
无监督的域适应性(UDA)是一个至关重要的协议,用于迁移从标记的源域中学到的信息,以促进未标记的异质目标域中的实现。尽管UDA通常经过来自两个域的数据的共同培训,但由于对患者数据隐私或知识产权的担忧,访问标记的源域数据通常受到限制。为了避开此问题,我们提出了“现成的(OS)” UDA(OSUDA),针对图像分割,通过调整在源域中训练的OS进行调整到目标域,在适应中没有源域数据的情况下, 。为了实现这一目标,我们旨在开发新的批准归一化(BN)统计适应框架。特别是,我们通过指数型衰减策略逐渐适应了特定于域的低阶BN统计数据,例如平均值和差异,同时明确执行可共享的可共享高阶BN统计的一致性,例如,扩展和转移因子缩放和转移因子。 ,通过我们的优化目标。我们还通过低阶统计差异和缩放因素来自适应量化通道的可传递性,以评估每个通道的重要性。记忆一致的自我训练策略利用可靠的伪标签来稳定,有效的无监督适应。我们评估了基于OSUDA的跨模式和交叉型脑肿瘤分割和心脏MR到CT分割任务的框架。我们的实验结果表明,我们的内存一致性的OSUDA的性能优于现有的 - 源 - 删除的UDA方法,并且具有与源数据的UDA方法相似的性能。
translated by 谷歌翻译